L. Vanduyfhuys

Mechanical energy storage performance of an aluminum fumarate metal-organic framework

P.G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J.-P. Itié, P. Fabry, N. Guillou, T. Devic, P.L. Llewellyn, V. Van Speybroeck, C. Serre, G. Maurin
Chemical Science
7, 446-450
2016
A1

Abstract 

The aluminum fumarate MOF A520 or MIL-53-FA is revealed to be a promising material for mechanical energy-related applications with performances in terms of work and heat energies which surpass those of any porous solids reported so far. Complementary experimental and computational tools are deployed to finely characterize and understand the pressure-induced structural transition at the origin of these unprecedented levels of performance.

Open Access version available at UGent repository

A comparison of barostats for the mechanical characterization of metal-organic frameworks

S.M.J. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen, G. Maurin, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
11 (12), 5583-5597
2015
A1

Abstract 

In this paper, three barostat coupling schemes for pressure control, which are commonly used in molecular dynamics simulations, are critically compared to characterise the rigid MOF-5 and the flexible MIL-53(Al) metal-organic frameworks. We investigate the performance of the three barostats, the Berendsen, the Martyna-Tuckerman-Tobias-Klein (MTTK) and the Langevin coupling methods, in reproducing the cell parameters and the pressure versus volume behaviour in isothermal-isobaric simulations. A thermodynamic integration method is used to construct the free energy profiles as a function of volume at finite temperature. It is observed that the aforementioned static properties are well reproduced with the three barostats. However, for static properties depending nonlinearly on the pressure, the Berendsen barostat might give deviating results as it suppresses pressure fluctuations more drastically. Finally, dynamic properties, which are directly related to the fluctuations of the cell, such as the time to transition from the large-pore to the closed-pore phase, cannot be well reproduced by any of the coupling schemes.

Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction

T. Bogaerts, L. Vanduyfhuys, D.E.P. Vanpoucke, J. Wieme, M. Waroquier, P. Van der Voort, V. Van Speybroeck
CrystEngComm
17, 8612–8622
2015
A1

Abstract 

The structural characterization of complex crystalline materials such as metal organic frameworks can prove a very difficult challenge both for experimentalists as for theoreticians. From theory, the flat potential energy surface of these highly flexible structures often leads to different geometries that are energetically very close to each other. In this work a distinction between various computationally determined structures is made by comparing experimental and theoretically derived X-ray diffractograms which are produced from the materials geometry. The presented approach allows to choose the most appropriate geometry of a MIL-47(V) MOF and even distinguish between different electronic configurations that induce small structural changes. Moreover the techniques presented here are used to verify the applicability of a newly developed force field for this material. The discussed methodology is of significant importance for modelling studies where accurate geometries are crucial, such as mechanical properties and adsorption of guest molecules.

On the stability and nature of adsorbed pentene in Brønsted acid zeolite H-ZSM-5 at 323 K

J. Hajek, J. Van der Mynsbrugge, K. De Wispelaere, P. Cnudde, L. Vanduyfhuys, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
340, 227 - 235
2016
A1

Abstract 

Adsorption of linear pentenes in H-ZSM-5 at 323 K is investigated using contemporary static and molecular dynamics methods. A physisorbed complex corresponding to free pentene, a π-complex and a chemisorbed species may occur. The chemisorbed species can be either a covalently bonded alkoxide or an ion pair, the so-called carbenium ion. Without finite temperature effects, the π-complex is systematically slightly more bound than the chemisorbed alkoxide complex, whereas molecular dynamics calculations at 323 K yield an almost equal stability of both species. The carbenium ion was not observed during simulations at 323 K. The transformation from the π-complex to the chemisorbed complex is activated by a free energy in the range of 33–42 kJ/mol. Our observations yield unprecedented insights into the stability of elusive intermediates in zeolite catalysis, for which experimental data are very hard to measure.

Open Access version available at UGent repository

Semi-Analytical mean-field model for predicting breathing in Metal-Organic Frameworks

L. Vanduyfhuys, A. Ghysels, S.M.J. Rogge, R. Demuynck, V. Van Speybroeck
Molecular Simulation
41, 16-17, 1311-1328
2015
A1

Abstract 

A new semi-analytical model is proposed to rationalize breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160 − 1300 A, which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behavior of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted.

Open Access version available at UGent repository

QuickFF: A program for a quick and easy derivation of force fields for Metal-Organic Frameworks from ab initio input

L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier, V. Van Speybroeck
Journal of Computational Chemistry
36, 13, 1015–1027
2015
A1

Abstract 

QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort.

Open Access version available at UGent repository

QuickFF: toward a generally applicable methodology to quickly derive accurate force fields for Metal-Organic Frameworks from ab initio input

L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier, V. Van Speybroeck
Journal of Computational Chemistry
2015
A1
Published while none of the authors were employed at the CMM

Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al)

P.G. Yot, Z. Boudene, J. Macia, D. Granier, L. Vanduyfhuys, T. Verstraelen, V. Van Speybroeck, T. Devic, C. Serre, G. Ferey, N. Stock, G. Maurin
Chemical Communications
50, 9462-9464
2014
A1

Abstract 

The mechanical energy absorption ability of the highly flexible; MIL-53(Al) MOF material was explored using a combination of; experiments and molecular simulations. A pressure-induced transition; between the large pore and the closed pore forms of this solid; was revealed to be irreversible and associated with a relatively large; energy absorption capacity. Both features make MIL-53(Al) the first; potential MOF candidate for further use as a shock absorber.

Open Access version available at UGent repository

On the thermodynamics of framework breathing: A free energy model for gas adsorption in MIL-53

A. Ghysels, L. Vanduyfhuys, M. Vandichel, M. Waroquier, V. Van Speybroeck, B. Smit
Journal of Physical Chemistry C
117, 11540-11554
2013
A1

Abstract 

When adsorbing guest molecules, the porous metal-organic framework MIL-53(Cr) may vary its cell parameters drastically while retaining its crystallinity. A first approach to the thermodynamic analysis of this 'framework breathing' consists of comparing the osmotic potential in two distinct shapes only (large-pore and narrow-pore). In this paper, we propose a generic parametrized free energy model including three contributions: host free energy, guest-guest interactions, and host-guest interaction. Free energy landscapes may now be constructed scanning all shapes and any adsorbed amount of guest molecules. This allows to determine which shapes are the most stable states for arbitrary combinations of experimental control parameters, such as the adsorbing gas chemical potential, the external pressure, and the temperature. The new model correctly reproduces the structural transitions along the CO2 and CH4 isotherms. Moreover, our model successfully explains the adsorption versus desorption hysteresis as a consequence of the creation, stabilization, destabilization, and disappearance of a second free energy minimum under the assumptions of a first order phase transition and collective behavior. Our general thermodynamic description allows to decouple the gas chemical potential μ and mechanical pressure P as two independent thermodynamic variables and predict the complete (μ,P) phase diagram for CO2 adsorption in MIL-53(Cr). The free energy model proposed here is an important step towards a general thermodynamics description of flexible metal-organic frameworks.

Analysis of the basis set superposition error in molecular dynamics of hydrogen-bonded liquids: application to methanol

M. Van Houteghem, T. Verstraelen, A. Ghysels, L. Vanduyfhuys, M. Waroquier, V. Van Speybroeck
Journal of Chemical Physics
137 (10), 104506
2012
A1

Abstract 

An ecient protocol is presented to compensate for the basis set superposition error (BSSE) in DFT molecular dynamics (MD) simulations using localized Gaussian basis sets. We propose a classical correction term that can be added a posteriori to account for BSSE. It is tested to what extension this term will improve radial distribution functions (RDFs). The proposed term is pairwise between certain atoms in dierent molecules and was calibrated by tting reference BSSE data points computed with the counterpoise method. It is veried that the proposed exponential decaying functional form of the model is valid. This work focuses on hydrogen-bonded liquids, i.e. methanol, and more specic on the intermolecular hydrogen bond, but in principle the method is generally applicable on any type of interaction where BSSE is significant. We evaluated the relative importance of the Grimme-dispersion versus BSSE and found that they are of the same order of magnitude, but with an opposite sign. Upon introduction of the correction, the relevant RDFs, obtained from MD, have amplitudes equal to experiment.

Open Access version available at UGent repository

Pages

Subscribe to RSS - L. Vanduyfhuys