M. Van Raemdonck

Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods

D.R. Alcoba, A. Torre, L. Lain, G. Massaccesi, O.B. Ona, P.W. Ayers, M. Van Raemdonck, P. Bultinck, D. Van Neck
Theoretical Chemistry Accounts
135 (6), 153
2016
A1

Abstract 

The coefficients of full configuration interaction wave functions (FCI) for N-electron systems expanded in N-electron Slater determinants depend on the orthonormal one-particle basis chosen although the total energy remains invariant. Some bases result in more compact wave functions, i.e. result in fewer determinants with significant expansion coefficients. In this work, the Shannon entropy, as a measure of information content, is evaluated for such wave functions to examine whether there is a relationship between the FCI Shannon entropy of a given basis and the performance of that basis in truncated CI approaches. The results obtained for a set of randomly picked bases are compared to those obtained using the traditional canonical molecular orbitals, natural orbitals, seniority minimising orbitals and a basis that derives from direct minimisation of the Shannon entropy. FCI calculations for selected atomic and molecular systems clearly reflect the influence of the chosen basis. However, it is found that there is no direct relationship between the entropy computed for each basis and truncated CI energies.

Maximum probability domains for Hubbard models

G. Acke, S. De Baerdemacker, P. Claeys, M. Van Raemdonck, W. Poelmans, D. Van Neck, P. Bultinck
Molecular Physics
114 (7-8), 1392-1405
2016
A1

Abstract 

The theory of maximum probability domains (MPDs) is formulated for the Hubbard model in terms of projection operators and generating functions for both exact eigenstates as well as Slater determinants. A fast MPD analysis procedure is proposed, which is subsequently used to analyse numerical results for the Hubbard model. It is shown that the essential physics behind the considered Hubbard models can be exposed using MPDs. Furthermore, the MPDs appear to be in line with what is expected from Valence Bond (VB) Theory-based knowledge.

Open Access version available at UGent repository

Eigenvalue-based determinants for scalar products and form factors in Richardson–Gaudin integrable models coupled to a bosonic mode

P. Claeys, S. De Baerdemacker, M. Van Raemdonck, D. Van Neck
Journal of Physics A: Mathematical and Theoretical
48 (42), 425201
2015
A1

Abstract 

Starting from integrable su(2) (quasi-)spin Richardson–Gaudin (RG) XXZ models we derive several properties of integrable spin models coupled to a bosonic mode. We focus on the Dicke–Jaynes–Cummings–Gaudin models and the two-channel (p + ip)-wave pairing Hamiltonian. The pseudo-deformation of the underlying su(2) algebra is here introduced as a way to obtain these models in the contraction limit of different RG models. This allows for the construction of the full set of conserved charges, the Bethe ansatz state, and the resulting RG equations. For these models an alternative and simpler set of quadratic equations can be found in terms of the eigenvalues of the conserved charges. Furthermore, the recently proposed eigenvalue-based determinant expressions for the overlaps and form factors of local operators are extended to these models, linking the results previously presented for the Dicke–Jaynes–Cummings–Gaudin models with the general results for RG XXZ models.

This paper has been selected as editor's pick

Polynomial scaling approximations and Dynamic Correlation Corrections to Doubly Occupied Configuration Interaction wave functions

M. Van Raemdonck, D. Alcoba, W. Poelmans, S. De Baerdemacker, A. Torre, L. Lain, G. Massaccesi, D. Van Neck, P. Bultinck
Journal of Chemical Physics
143 (10), 104106
2015
A1

Abstract 

A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

Open Access version available at UGent repository

Variational optimization of the second order density matrix corresponding to a seniority-zero configuration interaction wave function

W. Poelmans, M. Van Raemdonck, B. Verstichel, S. De Baerdemacker, A. Torre, L. Lain, G. Massaccesi, D. Alcoba, P. Bultinck, D. Van Neck
Journal of Chemical Theory and Computation (JCTC)
11 (9), 4064–4076
2015
A1

Abstract 

We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index $N$-representability $\mathcal{P}$-, $\mathcal{Q}$-, and $\mathcal{G}$-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly-occupied many-electron wave function, i.e.\ a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index $N$-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, $\text{N}_2$ and $\text{CN}^-$). This work is motivated by the fact that a doubly-occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly-occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as $L^3$, where $L$ is the number of spatial orbitals. Since the doubly-occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly-occupied framework.

The Dicke model as the contraction limit of a pseudo-deformed Richardson-Gaudin model

P. Claeys, S. De Baerdemacker, M. Van Raemdonck, D. Van Neck
Journal of Physics Conference Series
597, UNSP 012025
2015
P1

Abstract 

The Dicke model is derived in the contraction limit of a pseudo-deformation of the quasispin algebra in the su(2)-based Richardson-Gaudin models. Likewise, the integrability of the Dicke model is established by constructing the full set of conserved charges, the form of the Bethe Ansatz state, and the associated Richardson-Gaudin equations. Thanks to the formulation in terms of the pseudo-deformation, the connection from the su(2)-based Richardson-Gaudin model towards the Dicke model can be performed adiabatically.

Open Access version available at UGent repository

Eigenvalue-based method and form-factor determinant representations for integrable XXZ Richardson-Gaudin models

P. Claeys, S. De Baerdemacker, M. Van Raemdonck, D. Van Neck
Physical Review B
91 (15), 155102
2015
A1

Abstract 

We propose an extension of the numerical approach for integrable Richardson-Gaudin models based on a new set of eigenvalue-based variables [A. Faribault et al., Phys. Rev. B 83, 235124 (2011); O. El Araby et al., Phys. Rev. B 85, 115130 (2012)]. Starting solely from the Gaudin algebra, the approach is generalized towards the full class of XXZ Richardson-Gaudin models. This allows for a fast and robust numerical determination of the spectral properties of these models, avoiding the singularities usually arising at the so-called singular points. We also provide different determinant expressions for the normalization of the Bethe ansatz states and form factors of local spin operators, opening up possibilities for the study of larger systems, both integrable and nonintegrable. These expressions can be written in terms of the new set of variables and generalize the results previously obtained for rational Richardson-Gaudin models [A. Faribault and D. Schuricht, J. Phys. A 45, 485202 (2012)] and Dicke-Jaynes-Cummings-Gaudin models [H. Tschirhart and A. Faribault,  J. Phys. A 47, 405204 (2014)]. Remarkably, these results are independent of the explicit parametrization of the Gaudin algebra, exposing a universality in the properties of Richardson-Gaudin integrable systems deeply linked to the underlying algebraic structure.

Open Access version available at UGent repository

A hybrid configuration interaction treatment based on seniority number and excitation schemes

D.R. Alcoba, A. Torre, L. Lain, O.B. Ona, P. Capuzzi, M. Van Raemdonck, P. Bultinck, D. Van Neck
Journal of Chemical Physics
141 (24), 244118
2014
A1

Abstract 

We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method. (c) 2014 AIP Publishing LLC.

Open Access version available at UGent repository

Probing pairing correlations in Sn isotopes using Richardson-Gaudin integrability

S. De Baerdemacker, V. Hellemans, R. van den Berg, J.-S. Caux, K. Heyde, M. Van Raemdonck, D. Van Neck, P.A. Johnson, A. Buekenhoudt
Journal of Physics: Conference series
533, 012058
2014
P1

Abstract 

Pairing correlations in the even-even A = 102 − 130 Sn isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in particular on the previously reported sub-shell structure.

Open Access version available at UGent repository

Exact solution of the p(x) + ip(y) pairing Hamiltonian by deforming the pairing algebra

M. Van Raemdonck, S. De Baerdemacker, D. Van Neck
Physical Review B
89, 155136
2014
A1

Abstract 

Recently, interest has increased in the hyperbolic family of integrable Richardson-Gaudin (RG) models. It was pointed out that a particular linear combination of the integrals of motion of the hyperbolic RG model leads to a Hamiltonian that describes p-wave pairing in a two-dimensional system. Such an interaction is found to be present in fermionic superfluids (3He), ultracold atomic gases, and p-wave superconductivity. Furthermore the phase diagram is intriguing, with the presence of the Moore-Read and Read-Green lines. At the Read-Green line a rare third-order quantum phase transition occurs. The present paper makes a connection between collective bosonic states and the exact solutions of the px+ipy pairing Hamiltonian. This makes it possible to investigate the effects of the Pauli principle on the energy spectrum, by gradually reintroducing the Pauli principle. It also introduces an efficient and stable numerical method to probe all the eigenstates of this class of Hamiltonians. We extend the phase diagram to repulsive interactions, an area that was not previously explored due to the lack of a proper mean-field solution in this region. We found a connection between the point in the phase diagram where the ground state connects to the bosonic state with the highest collectivity, and the Moore-Read line where all the Richardson-Gaudin (RG) variables collapse to zero. In contrast with the reduced BCS case, the overlap between the ground state and the highest collective state at the Moore-Read line is not the largest. In fact it shows a minimum when most other bosonic states show a maximum of the overlap. We found remnants of the Read-Green line for finite systems, by investigating the total spectrum. A symmetry was found between the Hamiltonian with and without single-particle part. When the interaction was repulsive we found four different classes of trajectories of the RG variables.

Open Access version available at UGent repository

Pages

Subscribe to RSS - M. Van Raemdonck