S. De Baerdemacker

Efficient description of strongly correlated electrons with mean-field cost

K. Boguslawski, P. Tecmer, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck
Physical Review B
89 (20), 201106
2014
A1

Abstract 

We present an efficient approach to the electron correlation problem that is well suited for strongly interacting many-body systems, but requires only mean-field-like computational cost. The performance of our approach is illustrated for one-dimensional Hubbard rings with different numbers of sites, and for the nonrelativistic quantum-chemical Hamiltonian exploring the symmetric dissociation of the H-50 hydrogen chain.

Open Access version available at UGent repository

Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal

K. Boguslawski, P. Tecmer, P.A. Limacher, P.A. Johnson, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck
Journal of Chemical Physics
140 (21), 214114
2014
A1

Abstract 

We present a new, non-variational orbital-optimization scheme for the antisymmetric product of one-reference orbital geminal wave function. Our approach is motivated by the observation that an orbital-optimized seniority-zero configuration interaction (CI) expansion yields similar results to an orbital-optimized seniority-zero-plus-two CI expansion [L. Bytautas, T. M. Henderson, C. A. Jimenez-Hoyos, J. K. Ellis, and G. E. Scuseria, J. Chem. Phys. 135, 044119 (2011)]. A numerical analysis is performed for the C-2 and LiF molecules, for the CH2 singlet diradical as well as for the symmetric stretching of hypothetical (linear) hydrogen chains. For these test cases, the proposed orbital-optimization protocol yields similar results to its variational orbital optimization counterpart, but prevents symmetry-breaking of molecular orbitals in most cases. (C) 2014 AIP Publishing LLC.

Quasi-1D physics in Metal-Organic Frameworks: MIL-47(V) from first principles

D.E.P. Vanpoucke, J. Jaeken, S. De Baerdemacker, K. Lejaeghere, V. Van Speybroeck
Beilstein Journal of Nanotechnology
5, 1738–1748
2014
A1

Abstract 

The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials

Open Access version available at UGent repository

The influence of orbital rotation on the energy of closed-shell wavefunctions

P.A. Limacher, T.D. Kim, P.W. Ayers, P.A. Johnson, S. De Baerdemacker, D. Van Neck, P. Bultinck
Molecular Physics
112 (5-6), 853-862
2014
A1

Abstract 

The orbital dependence of closed-shell wavefunction energies is investigated by performing doubly-occupied configuration interaction (DOCI) calculations, representing the most general class of these wavefunctions. Different local minima are examined for planar hydrogen clusters containing two, four, and six electrons applying (spin) symmetry-broken restricted, unrestricted, and generalised orbitals with real and complex coefficients. Contrary to Hartree-Fock (HF), restricted DOCI is found to properly break bonds and thus unrestricted orbitals, while providing a quantitative improvement of the energy, are not needed to enforce a qualitatively correct bond dissociation. For the beryllium atom and the BH diatomic, the lowest possible HF energy requests symmetry-broken generalised orbitals, whereas accurate results for DOCI can be obtained within a restricted formalism. Complex orbital coefficients are shown to increase the accuracy of HF and DOCI results in certain cases. The computationally inexpensive AP1roG geminal wavefunction is proven to agree very well with all DOCI results of this study.

Open Access version available at UGent repository

Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals

P.A. Limacher, P.W. Ayers, P.A. Johnson, S. De Baerdemacker, D. Van Neck, P. Bultinck
Physical Chemistry Chemical Physics (PCCP)
16 (11), 5061-5065
2014
A1

Abstract 

A new multireference perturbation approach has been developed for the recently proposed AP1roG scheme, a computationally facile parametrization of an antisymmetric product of nonorthogonal geminals. This perturbation theory of second-order closely follows the biorthogonal treatment from multiconfiguration perturbation theory as introduced by Surjan et al., but makes use of the additional feature of AP1roG that the expansion coefficients within the space of closed-shell determinants are essentially correct already, which further increases the predictive power of the method. Building upon the ability of AP1roG to model static correlation, the perturbation correction accounts for dynamical electron correlation, leading to absolute energies close to full configuration interaction results. Potential surfaces for multiple bond dissociation in H2O and N-2 are predicted with high accuracy up to bond breaking. The computational cost of the method is the same as that of conventional single-reference MP2.

Open Access version available at UGent repository

Exact solution of the p(x) + ip(y) pairing Hamiltonian by deforming the pairing algebra

M. Van Raemdonck, S. De Baerdemacker, D. Van Neck
Physical Review B
89, 155136
2014
A1

Abstract 

Recently, interest has increased in the hyperbolic family of integrable Richardson-Gaudin (RG) models. It was pointed out that a particular linear combination of the integrals of motion of the hyperbolic RG model leads to a Hamiltonian that describes p-wave pairing in a two-dimensional system. Such an interaction is found to be present in fermionic superfluids (3He), ultracold atomic gases, and p-wave superconductivity. Furthermore the phase diagram is intriguing, with the presence of the Moore-Read and Read-Green lines. At the Read-Green line a rare third-order quantum phase transition occurs. The present paper makes a connection between collective bosonic states and the exact solutions of the px+ipy pairing Hamiltonian. This makes it possible to investigate the effects of the Pauli principle on the energy spectrum, by gradually reintroducing the Pauli principle. It also introduces an efficient and stable numerical method to probe all the eigenstates of this class of Hamiltonians. We extend the phase diagram to repulsive interactions, an area that was not previously explored due to the lack of a proper mean-field solution in this region. We found a connection between the point in the phase diagram where the ground state connects to the bosonic state with the highest collectivity, and the Moore-Read line where all the Richardson-Gaudin (RG) variables collapse to zero. In contrast with the reduced BCS case, the overlap between the ground state and the highest collective state at the Moore-Read line is not the largest. In fact it shows a minimum when most other bosonic states show a maximum of the overlap. We found remnants of the Read-Green line for finite systems, by investigating the total spectrum. A symmetry was found between the Hamiltonian with and without single-particle part. When the interaction was repulsive we found four different classes of trajectories of the RG variables.

Open Access version available at UGent repository

Variational optimization of the 2DM: approaching three-index accuracy using extended cluster constraints

B. Verstichel, W. Poelmans, S. De Baerdemacker, S. Wouters, D. Van Neck
European Physical Journal B
87(3), 59
2014
A1

Abstract 

The reduced density matrix is variationally optimized for the two-dimensional Hubbard model. Exploiting all symmetries present in the system, we have been able to study 6 × 6 lattices at various fillings and different values for the on-site repulsion, using the highly accurate but computationally expensive three-index conditions. To reduce the computational cost we study the performance of imposing the three-index constraints on local clusters of 2 × 2 and 3 × 3 sites. We subsequently derive new constraints which extend these cluster constraints to incorporate the open-system nature of a cluster on a larger lattice. The feasibility of implementing these new constraints is demonstrated by performing a proof-of-principle calculation on the 6 × 6 lattice. It is shown that a large portion of the three-index result can be recovered using these extended cluster constraints, at a fraction of the computational cost.

The NEGATOR as a Basic Building Block for Quantum Circuits

A. De Vos (Alexis), S. De Baerdemacker
Open Systems & Information Dynamics
20 (1), 1350004
2013
A1

Abstract 

Between (classical) reversible computation and quantum computation there exists an intermediate computational world, represented by unitary matrices that have all line sums equal to 1. All of these quantum circuits can be synthesized with the help of merely two building blocks: the NEGATOR and the singly controlled square root of NOT.

Read More: http://www.worldscientific.com/doi/abs/10.1142/S1230161213500042

Open Access version available at UGent repository

A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals

P.A. Limacher, P.W. Ayers, S. De Baerdemacker, D. Van Neck, P. Bultinck
Journal of Chemical Theory and Computation (JCTC)
9 (3), 1394-1401
2013
A1

Abstract 

We propose an approach to the electronic structure problem based on noninteracting electron pairs that has similar computational cost to conventional methods based on noninteracting electrons. In stark contrast to other approaches, the wave function is an antisymmetric product of nonorthogonal geminals, but the geminals are structured so the projected Schrödinger equation can be solved very efficiently. We focus on an approach where, in each geminal, only one of the orbitals in a reference Slater determinant is occupied. The resulting method gives good results for atoms and small molecules. It also performs well for a prototypical example of strongly correlated electronic systems, the hydrogen atom chain.

Perturbations on the superconducting state of metallic nanoparticles: influence of geometry and impurities

M. Van Raemdonck, S. De Baerdemacker, D. Van Neck
The European Physical Journal D
67 (2013), 14
2013
A1

Abstract 

The pair condensation energy of a finite-size superconducting particle is studied as a function of two control parameters. The first control parameter is the shape of the particle, and the second parameter is a position-dependent impurity introduced in the particle. Whereas the former parameter is known to induce strong fluctuations in the condensation energy, the latter control parameter is found to be a more gentle probe of the pairing correlations.

Pages

Subscribe to RSS - S. De Baerdemacker