Abstract
Density functional theory calculations are used to determine the kinetics and reactivity indices of the first propagation steps of the polyethylene and poly(vinyl chloride) polymerization. Transition state theory is applied to evaluate the rate coefficient from the microscopically determined energies and partition functions. A comparison with the experimental Arrhenius plots validates the level of theory. The ability of reactivity indices to predict certain aspects of the studied propagation reactions is tested. Global softnesses of the reactants give an indication of the relative energy barriers of subsequent monomer additions. The correlation between energy and hardness profiles along the reaction path confirm the principle of maximum hardness. Local indices predict the regioselectivity of the attack of the growing radical to vinyl chloride. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005