A. Ghysels

Permeability of membranes in the liquid ordered and liquid disordered phases

A. Ghysels, A. Krämer, R.M. Venable, W. E. Teague Jr., E. Lyman, K. Gawrisch, R.W. Pastor
Nature Communications
10, 5616
2019
A1

Abstract 

The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (Lo) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of Lo phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (Ld) and Lo bilayers of DPPC/DOPC/cholesterol is 1.75 ± 0.35, in very good agreement with 1.3 ± 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the Ld phase.

Open Access version available at UGent repository
Gold Open Access

Membrane Permeability: Characteristic Times and Lengths for Oxygen and a Simulation-Based Test of the Inhomogeneous Solubility-Diffusion Model

O. De Vos, R.M. Venable, T. Van Hecke, G. Hummer, R.W. Pastor, A. Ghysels
Journal of Chemical Theory and Computation (JCTC)
14 (7), 3811-3824
2018
A1

Abstract 

The balance of normal and radial (lateral) diffusion of oxygen in phospholipid membranes is critical for biological function. Based on the Smoluchowski equation for the inhomogeneous solubility-diffusion model, Bayesian analysis (BA) can be applied to molecular dynamics trajectories of oxygen to extract the free energy and the normal and radial diffusion profiles. This paper derives a theoretical formalism to convert these profiles into characteristic times and lengths associated with entering, escaping, or completely crossing the membrane. The formalism computes mean first passage times and holds for any process described by rate equations between discrete states. BA of simulations of eight model membranes with varying lipid composition and temperature indicate that oxygen travels 3 to 5 times further in the radial than in the normal direction when crossing the membrane in a time of 15 to 32 ns, thereby confirming the anisotropy of passive oxygen transport in membranes. Moreover, the preceding times and distances estimated from the BA are compared to the aggregate of 280 membrane exits explicitly observed in the trajectories. BA predictions for the distances of oxygen radial diffusion within the membrane are statistically indistinguishable from the corresponding simulation values, yet BA oxygen exit times from the membrane interior are approximately 20% shorter than the simulation values, averaged over seven systems. The comparison supports the BA approach and, therefore, the applicability of the Smoluchowski equation to membrane diffusion. Given the shorter trajectories required for the BA, these results validate the BA as a computationally attractive alternative to direct observation of exits when estimating characteristic times and radial distances. The effect of collective membrane undulations on the BA is also discussed.

The Importance of Cell Shape Sampling To Accurately Predict Flexibility in Metal-Organic Frameworks

S.M.J. Rogge, S. Caroes, R. Demuynck, M. Waroquier, V. Van Speybroeck, A. Ghysels
Journal of Chemical Theory and Computation
14 (3), 1186-1197
2018
A1

Abstract 

In this work, the influence of cell shape sampling on the predicted stability of the different metastable phases in flexible metal–organic frameworks at finite temperatures is investigated. The influence on the free energy by neglecting cell shape sampling is quantified for the prototypical MIL-53(Al) and the topical DUT-49(Cu). This goal is achieved by constructing free energy profiles in ensembles either in which the phase space associated with the cell shape is sampled explicitly or in which the cell shape is kept fixed. When neglecting cell shape sampling, thermodynamic integration of the hydrostatic pressure yields unreliable free energy profiles that depend on the choice of the fixed cell shape. In this work, we extend the thermodynamic integration procedure via the introduction of a generalized pressure, derived from the Lagrangian strain tensor and the second Piola–Kirchhoff tensor. Using this generalized procedure, the dependence on the unit cell shape can be eliminated, and the inaccuracy in free energy stemming from the lack of cell shape sampling can be uniquely quantified. Finally, it is shown that the inaccuracy in free energy when fixing the cell shape at room temperature stems mainly from entropic contributions for both MIL-53(Al) and DUT-49(Cu).

Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes

A. Ghysels, R.M. Venable, R.W. Pastor, G. Hummer
Journal of Chemical Theory and Computation (JCTC)
13 (6), 2962-2976
2017
A1

Abstract 

A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overtons rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.

Discovery of Mycobacterium tuberculosis InhA Inhibitors by Binding Sites Comparison and Ligands Prediction

T. Stular, S. Lesnik, K. Rozman, J. Schink, M. Zdouc, A. Ghysels, F. Liu, C.C. Aldrich, V.J. Haupt, S. Salentin, S. Daminelli, M. Schroeder, T. Langer, S. Gobec, D. Janezic, J. Konc
Journal of Medicinal Chemistry
59 (24), 11069-11078
2016
A1

Abstract 

Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiSi-ligands approach, which for a given protein structure allows prediction of its binding:sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands' poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin's utility in the early drug discovery process.

Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks

M. Vandichel, J. Hajek, A. Ghysels, A. De Vos, M. Waroquier, V. Van Speybroeck
CrystEngComm
18 (37), 7056-7069
2016
A1

Abstract 

The UiO-66 metal organic framework is one of the most thermally and chemically stable hybrid materials reported to date. However, it is also accepted that the material contains structurally embedded defects, which may be engineered to enhance properties towards specific applications such as catalysis, sensing, etc. The synthesis conditions determine to a large extent the level of perfection of the material and additionally the catalytic activity may be enhanced by post-synthesis activation at high temperature under vacuum, in which defect coordinating species (H2O, HCl, monocarboxylic modulators, etc.) evaporate. The molecular level characterization of defects is extremely challenging from both theoretical and experimental points of view. Such experimental endeavor was recently proposed via experimental SXRD measurements, also unraveling the coordination of water on the Zr–O–Zr defect sites [Angew. Chem., Int. Ed., 2015, 54, 11162–11167]. The present work provides a theoretical understanding of defect structures in UiO-66(Zr) by means of periodic density functional theory calculations and ab initio molecular dynamics simulations. A range of defect structures are generated with different numbers of missing linkers. For each of the defects, the free energetic and mechanical stability is discussed and the coordination of water and charge balancing hydroxide ions is studied. For catalysis applications, the material is mostly pretreated to remove water by dehydration reactions. For each of the proposed defect structures, mechanistic pathways for dehydration reactions of the Zr-bricks are determined employing nudged elastic band (NEB) calculations. During the dehydroxylation trajectory, loose hydroxyl groups and terephthalate decoordinations are observed. Furthermore, dehydration reactions are lower activated if terephthalate linkers are missing in the immediate environment of the inorganic brick. The creation of defects and the dehydration processes have a large impact on the mechanical properties of the material, which is evidenced by lower bulk moduli and elastic constants for structures with more defects.

DOI 

10.1039/C6CE01027J

A comparison of barostats for the mechanical characterization of metal-organic frameworks

S.M.J. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen, G. Maurin, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
11 (12), 5583-5597
2015
A1

Abstract 

In this paper, three barostat coupling schemes for pressure control, which are commonly used in molecular dynamics simulations, are critically compared to characterise the rigid MOF-5 and the flexible MIL-53(Al) metal-organic frameworks. We investigate the performance of the three barostats, the Berendsen, the Martyna-Tuckerman-Tobias-Klein (MTTK) and the Langevin coupling methods, in reproducing the cell parameters and the pressure versus volume behaviour in isothermal-isobaric simulations. A thermodynamic integration method is used to construct the free energy profiles as a function of volume at finite temperature. It is observed that the aforementioned static properties are well reproduced with the three barostats. However, for static properties depending nonlinearly on the pressure, the Berendsen barostat might give deviating results as it suppresses pressure fluctuations more drastically. Finally, dynamic properties, which are directly related to the fluctuations of the cell, such as the time to transition from the large-pore to the closed-pore phase, cannot be well reproduced by any of the coupling schemes.

Mechanical properties from periodic plane wave QM codes: the challenge of the flexible nanoporous MIL-47 (V) framework

D.E.P. Vanpoucke, K. Lejaeghere, V. Van Speybroeck, M. Waroquier, A. Ghysels
Journal of Physical Chemistry C
119, 23752-23766
2015
A1

Abstract 

Modeling the flexibility of metal–organic frameworks (MOFs) requires the computation of mechanical properties from first principles, e.g., for screening of materials in a database, for gaining insight into structural transformations, and for force field development. However, this paper shows that computations with periodic density functional theory are challenged by the flexibility of these materials: guidelines from experience with standard solid-state calculations cannot be simply transferred to flexible porous frameworks. Our test case, the MIL-47(V) material, has a large-pore and a narrow-pore shape. The effect of Pulay stress (cf. Pulay forces) leads to drastic errors for a simple structure optimization of the flexible MIL-47(V) material. Pulay stress is an artificial stress that tends to lower the volume and is caused by the finite size of the plane wave basis set. We have investigated the importance of this Pulay stress, of symmetry breaking, and of k-point sampling on (a) the structure optimization and (b) mechanical properties such as elastic constants and bulk modulus, of both the large-pore and narrow-pore structure of MIL-47(V). We found that, in the structure optimization, Pulay effects should be avoided by using a fitting procedure, in which an equation of state E(V) (EOS) is fit to a series of energy versus volume points. Manual symmetry breaking could successfully lower the energy of MIL-47(V) by distorting the vanadium–oxide distances in the vanadyl chains and by rotating the benzene linkers. For the mechanical properties, the curvature of the EOS curve was compared with the Reuss bulk modulus, derived from the elastic tensor in the harmonic approximation. Errors induced by anharmonicity, the eggbox effect, and Pulay effects propagate into the Reuss modulus. The strong coupling of the unit cell axes when the unit cell deforms expresses itself in numerical instability of the Reuss modulus. For a flexible material, it is therefore advisible to resort to the EOS fit procedure.

Open Access version available at UGent repository

Shape-selective diffusion of olefins in 8-ring solid acid microporous zeolites

A. Ghysels, S.L. Moors, K. Hemelsoet, K. De Wispelaere, M. Waroquier, G. Sastre, V. Van Speybroeck
Journal of Physical Chemistry C
119, 41, 23721-23734
2015
A1

Abstract 

The diffusion of olefins through 8-ring solid acid microporous zeolites is investigated using molecular dynamics simulations techniques and using a newly developed flexible force field. Within the context of the Methanol to Olefin (MTO) process and the observed product distribution, knowledge on the diffusion paths is essential to obtain molecular level control over the process conditions. Eight-ring zeotype materials are favorably used for the MTO process as they give a selective product distribution towards low carbon olefins. To investigate how composition, acidity and flexibility influence the diffusion paths of ethene and propene, a series of isostructural aluminosilicates (zeolites) and silicoaluminophosphates (AlPOs and SAPOs) are investigated with and without randomly distributed acidic sites. Distinct variations in diffusion of ethene are observed in terms of temperature, composition, acidity, and topology (AEI, CHA, AFX). In general, diffusion of ethene is an activated process for which free energy barriers for individual rings may be determined. We observe ring dependent diffusion behavior which can not solely be described in terms of the composition and topology of the rings. A new descriptor had to be introduced namely the accessible window area (AWA), inspired by implicit solvation models of proteins and small molecules. The AWA may be determined throughout the molecular dynamics trajectories and correlates well with the number of ring crossings at the molecular level and the free energy barriers for ring crossings from one cage to the other. The overall observed diffusivity is determined by molecular characteristics of individual rings for which AWA is a proper descriptor. Temperature-induced changes in framework dynamics and diffusivity may be captured by following the new descriptor throughout the simulations.

Open Access version available at UGent repository
Green Open Access

Pages

Subscribe to RSS - A. Ghysels