A. Ghysels

Experimental and theoretical IR study of methanol and ethanol conversion over H-SAPO-34

K. Hemelsoet, A. Ghysels, D. Mores, K. De Wispelaere, V. Van Speybroeck, B.M. Weckhuysen, M. Waroquier
Catalysis Today
177 (1), 12-24
2011
A1

Abstract 

Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out to be vital and ethanol adsorbs stronger than methanol with approximately 14 kJ mol(-1). Calculated IR spectra of the alcohols and of formed aromatic cations upon conversion are also analyzed and support the peak assignment of the experimental in situ DRIFT spectra, in particular for the C-H and C=C regions. Theoretical IR spectra of the gas phase compounds are compared with those of the molecules loaded in a SAPO cluster and the observed shifts of the peak positions are discussed. To get a better understanding of these framework-guest interactions, a new theoretical procedure is proposed based on a normal mode analysis. A cumulative overlap function is defined and enables the characterization of individual peaks as well as induced frequency shifts upon adsorption. (C) 2010 Elsevier B. V. All rights reserved.

Open Access version available at UGent repository

Normal modes for large molecules with arbitrary link constraints in the mobile block Hessian approach

A. Ghysels, D. Van Neck, B.R. Brooks, V. Van Speybroeck, M. Waroquier
Journal of Chemical Physics
130 (8), 084107
2009
A1

Abstract 

In a previous paper [ Ghysels et al., J. Chem. Phys. 126, 224102 (2007) ] the mobile block Hessian (MBH) approach was presented. The method was designed to accurately compute vibrational modes of partially optimized molecular structures. The key concept was the introduction of several blocks of atoms, which can move as rigid bodies with respect to a local, fully optimized subsystem. The choice of the blocks was restricted in the sense that none of them could be connected, and also linear blocks were not taken into consideration. In this paper an extended version of the MBH method is presented that is generally applicable and allows blocks to be adjoined by one or two common atoms. This extension to all possible block partitions of the molecule provides a structural flexibility varying from very rigid to extremely relaxed. The general MBH method is very well suited to study selected normal modes of large macromolecules (such as proteins and polymers) because the number of degrees of freedom can be greatly reduced while still keeping the essential motions of the molecular system. The reduction in the number of degrees of freedom due to the block linkages is imposed here directly using a constraint method, in contrast to restraint methods where stiff harmonic couplings are introduced to restrain the relative motion of the blocks. The computational cost of this constraint method is less than that of an implementation using a restraint method. This is illustrated for the α-helix conformation of an alanine-20-polypeptide. © 2009 American Institute of Physics

Mobile Block Hessian Approach with Adjoined Blocks: An Efficient Approach for the Calculation of Frequencies in Macromolecules

A. Ghysels, V. Van Speybroeck, E. Pauwels, D. Van Neck, B.R. Brooks, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
5 (5), 1203-1215
2009
A1

Abstract 

In an earlier work, the authors developed a new method, the mobile block Hessian (MBH) approach, to accurately calculate vibrational modes for partially optimized molecular structures [ J. Chem. Phys. 2007, 126 (22), 224102.]. It is based on the introduction of blocks, consisting of groups of atoms, that can move as rigid bodies. The internal geometry of the blocks need not correspond to an overall optimization state of the total molecular structure. The standard MBH approach considers free blocks with six degrees of freedom. In the extended MBH approach introduced herein, the blocks can be connected by one or two adjoining atoms, which further reduces the number of degrees of freedom. The new approach paves the way for the normal-mode analysis of biomolecules such as proteins. It rests on the hypothesis that low-frequency modes of proteins can be described as pure rigid-body motions of blocks of consecutive amino acid residues. The method is validated for a series of small molecules and further applied to alanine dipeptide as a prototype to describe vibrational interactions between two peptide units; to crambin, a small protein with 46 amino acid residues; and to ICE/caspase-1, which contains 518 amino acid residues.

Vibrational subsystem analysis: A method for probing free energies and correlations in the harmonic limit

H. Lee Woodcock III, W. Zheng, A. Ghysels, Y. Shao, J. Kong, B.R. Brooks
Journal of Chemical Physics
129 (21), 214109
2008
A1

Abstract 

A new vibrational subsystem analysis (VSA) method is presented for coupling global motion to a local subsystem while including the inertial effects of the environment. The premise of the VSA method is a partitioning of a system into a smaller region of interest and a usually larger part referred to as environment. This method allows the investigation of local-global coupling, a more accurate estimation of vibrational free energy contribution for parts of a large system, and the elimination of the “tip effect” in elastic network model calculations. Additionally, the VSA method can be used as a probe of specific degrees of freedom that may contribute to free energy differences. The VSA approach can be employed in many ways, but it will likely be most useful for estimating activation free energies in QM/MM reaction path calculations. Four examples are presented to demonstrate the utility of this method.

MFI Fingerprint: How Pentasil-Induced IR Bands Shift during Zeolite Nanogrowth

D. Lesthaeghe, P. Vansteenkiste, T. Verstraelen, A. Ghysels, C. Kirschhock, J.A. Martens, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry C
112 (25), 9186-9191
2008
A1

Abstract 

Silicalite-1 zeolite exhibits a characteristic pentasil framework vibration around 540−550 cm−1. In the initial stages of zeolite synthesis, however, this band is observed at much higher wavenumbers: literature shows this vibration to depend on particle size and to shift over 100 cm−1 with increasing condensation. In this work, the pentasil vibration frequency was derived from theoretical molecular dynamics simulations to obtain the correct IR band assignments for important nanoparticles. The IR spectroscopic fingerprint of oligomeric five-ring containing precursors proposed in the literature was computed and compared with experimental data. Our theoretical results show that, while isolated five-membered rings show characteristic vibrational bands around 650 cm−1, the combination of five-membered rings in the full MFI-type structure readily generates the bathochromic shift to the typical pentasil vibration around 550 cm−1. As opposed to what was previously believed, the IR band does not shift gradually as nanoparticle size increases, but it is highly dependent on the specific way structural units are added. The most important feature is the appearance of an additional band when double five-membered rings are included, which allows for a clear distinction between the key stages of early zeolite nucleation. Furthermore, the combination of the simulated spectra with the experimental observation of this spectral feature in nanoparticles extracted from silicalite-1 clear solutions supports their structured nature. The theoretical insights on the dependency of pentasil vibrations with the degree of condensation offer valuable support toward future investigations on the genesis of a zeolite crystal.

Calculating Reaction Rates with Partial Hessians: Validation of the Mobile Block Hessian Approach

A. Ghysels, V. Van Speybroeck, T. Verstraelen, D. Van Neck, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
4 (4) 614-625
2008
A1

Abstract 

In an earlier paper, the authors have developed a new method, the mobile block Hessian (MBH), to accurately calculate vibrational modes for partially optimized molecular structures [J. Chem. Phys. 2007, 126 (22), 224102]. The proposed procedure remedies the artifact of imaginary frequencies, occurring in standard frequency calculations, when parts of the molecular system are optimized at different levels of theory. Frequencies are an essential ingredient in predicting reaction rate coefficients due to their input in the vibrational partition functions. The question arises whether the MBH method is able to describe the chemical reaction kinetics in an accurate way in large molecular systems where a full quantum chemical treatment at a reasonably high level of theory is unfeasible due to computational constraints. In this work, such a validation is tested in depth. The MBH method opens a lot of perspectives in predicting accurate kinetic parameters in chemical reactions where the standard full Hessian procedure fails.

Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems

A. Ghysels, D. Van Neck, M. Waroquier
Journal of Chemical Physics
127 (16), 164108
2007
A1

Abstract 

Partial optimization is a useful technique to reduce the computational load in simulations of extended systems. In such nonequilibrium structures, the accurate calculation of localized vibrational modes can be troublesome, since the standard normal mode analysis becomes inappropriate. In a previous paper [ A. Ghysels et al., J. Chem. Phys. 126, 224102 (2007) ], the mobile block Hessian (MBH) approach was presented to deal with the vibrational analysis in partially optimized systems. In the MBH model, the nonoptimized regions of the system are represented by one or several blocks, which can move as rigid bodies with respect to the atoms of the optimized region. In this way unphysical imaginary frequencies are avoided and the translational/rotational invariance of the potential energy surface is fully respected. In this paper we focus on issues concerning the practical numerical implementation of the MBH model. The MBH normal mode equations are worked out for several coordinate choices. The introduction of a consistent group-theoretical notation facilitates the treatment of both the case of a single block and the case of multiple blocks. Special attention is paid to the formulation in terms of Cartesian variables, in order to provide a link with the standard output of common molecular modeling programs.

Vibrational Modes in partially optimized molecular systems

A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier
Journal of Chemical Physics
126 (22), 224102
2007
A1

Abstract 

In this paper the authors develop a method to accurately calculate localized vibrational modes for partially optimized molecular structures or for structures containing link atoms. The method avoids artificially introduced imaginary frequencies and keeps track of the invariance under global translations and rotations. Only a subblock of the Hessian matrix has to be constructed and diagonalized, leading to a serious reduction of the computational time for the frequency analysis. The mobile block Hessian approach (MBH) proposed in this work can be regarded as an extension of the partial Hessian vibrational analysis approach proposed by Head [Int. J. Quantum Chem. 65, 827 (1997)] . Instead of giving the nonoptimized region of the system an infinite mass, it is allowed to move as a rigid body with respect to the optimized region of the system. The MBH approach is then extended to the case where several parts of the molecule can move as independent multiple rigid blocks in combination with single atoms. The merits of both models are extensively tested on ethanol and di-n-octyl-ether.

Role of mean free path in spatial phase correlation and nodal screening

B. A. van Tiggelen, D. Anache, A. Ghysels
EPL (Europhysics letters)
74 (6), 999-1005
2006
A1

Abstract 

We study the spatial correlation function of the phase and its derivative, and related, fluctuations of topological charge, in two- and three-dimensional random media described by Gaussian statistics. We investigate their dependence on the scattering mean free path.

Comparative study of various normal mode analysis techniques based on partial Hessians

A. Ghysels, V. Van Speybroeck, E. Pauwels, S. Catak, B.R. Brooks, D. Van Neck, M. Waroquier
Journal of Computational Chemistry
31 (5), 994-1007
2010
A1

Abstract 

Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010

Pages

Subscribe to RSS - A. Ghysels