E. Breynaert

Development of porous organic polymers as metal free photocatalysts for the aromatization of N-heterocycles

M. Debruyne, N. Raeymackers, H. Vrielinck, S. Radhakrishnan, E. Breynaert, M. Delaey, A. Laemont, K. Leus, J. Everaert, H. Rijckaert, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C. Stevens, T.S.A Heugebaert
ChemCatChem
2023
A1

Abstract 

Porous organic polymers (POPs), and especially covalent triazine frameworks (CTFs), are being developed as the next generation of metal-free heterogeneous photocatalysts. However, many of the current synthetic routes to obtain these photoactive POPs require expensive monomers and rely on precious metal catalysts, thus hindering their widespread implementation. In this work, a range of POPs was synthesized from simple unfunctionalized aromatic building blocks, through Lewis acidcatalyzed polymerization. The obtained materials were applied, for the first time, as heterogeneous photocatalysts for the aromatization of N-heterocycles. With the use of the most active material, denoted as CTF-Pyr, which consists of photoactive pyrene and triazine moieties, a wide range of pyridines, dihydroquinoline-5-ones, tetrahydroacridine-1,8-diones and pyrazoles were obtained in excellent yields (70-99%). Moreover, these reactions were carried out under very mild conditions using air and at room temperature, highlighting the potential of these materials as catalysts for green transformations.

Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization

M. Debruyne, S. Borgmans, S. Radhakrishnan, E. Breynaert, H. Vrielinck, K. Leus, A. Laemont, J. De Vos, K. S. Rawat, S. Vanlommel, H. Rijckaert, H. Salemi, J. Everaert, F. Vanden Bussche, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C.V. Stevens
ACS Applied Materials & Interfaces
15, 29, 35092–35106
2023
A1

Abstract 

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

Open Access version available at UGent repository

How water and ion mobility affect the NMR fingerprints of the hydrated JBW zeolite: a combined computational-experimental investigation

S. Vanlommel, A.E.J. Hoffman, S. Smet, S. Radhakrishnan, K. Asselman, C. V. Chandran, E. Breynaert, C. Kirschhock, J.A. Martens, V. Van Speybroeck
Chemistry - A European Journal
28, 68, e202202621
2022
A1

Abstract 

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

Gold Open Access

Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis

K. Asselman, N. Pellens, S. Radhakrishnan, C. V. Chandran, J.A. Martens, F. Taulelle, T. Verstraelen, M. Hellstrom, E. Breynaert, C. Kirschhock
Materials Horizons
Volume 8, Issue 9, Pages 2576-2583
2021
A1

Abstract 

In inorganic zeolite formation, a direct correspondence between liquid state species in the synthesis and the supramolecular decoration of the pores in the as-made final zeolite has never been reported. In this paper, a direct link between the sodium speciation in the synthesis mixture and the pore structure and content of the final zeolite is demonstrated in the example of hydroxysodalite. Super-ions with 4 sodium cations bound by mono- and bihydrated hydroxide are identified as structure-directing agents for the formation of this zeolite. This documentation of inorganic solution species acting as a templating agent in zeolite formation opens new horizons for zeolite synthesis by design.

Interfacial study of clathrates confined in reversed silica pores

P. M. Mileo, S.M.J. Rogge, M. Houlleberghs, E. Breynaert, J.A. Martens, V. Van Speybroeck
Journal of Materials Chemistry A
9(38), 21835-21844
2021
A1

Abstract 

Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.

Gold Open Access

Hydrogen Clathrates: Next Generation Hydrogen Storage Materials

A. Gupta, G.V. Baron, P. Perreault, S. Lenaerts, R.-G. Ciocarlan, P. Cool, P. M. Mileo, S.M.J. Rogge, V. Van Speybroeck, G. Watson, P. Van der Voort, M. Houlleberghs, E. Breynaert, J.A. Martens, J.F.M. Denayer
Energy Storage Materials
41, 69-107
2021
A1

Abstract 

Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.

Gold Open Access

Strongly Reducing (Diarylamino)benzene Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H2O2 Generation

C. Krishnaraj, H. S. Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S.M.J. Rogge, K. Leus, C.V. Stevens, J.A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van der Voort
JACS (Journal of the American Chemical Society)
142 (47), 20107-20116
2020
A1

Abstract 

Photocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer. Herein, we report two newly designed two-dimensional COFs based on a (diarylamino)benzene linker that forms a Kagome (kgm) lattice and shows strong visible light absorption. Their high crystallinity and large surface areas (up to 1165 m2·g−1) allow efficient charge transfer and diffusion. The diarylamine (donor) unit promotes strong reduction properties, enabling these COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system allows efficient photocatalytic solar transformations.

Gold Open Access

Alternating Copolymer of Double Four Ring Silicate and Dimethyl Silicone Monomer - PSS-1

S. Smet, S. Vandenbrande, P. Verlooy, S. Kerkhofs, E. Breynaert, C. Kirschhock, C. Martineau, F. Taulelle, V. Van Speybroeck, J.A. Martens
Chemistry - A European Journal
23 (47), 11286-11293
2017
A1

Abstract 

A new copolymer consisting of double four ring (D4R) silicate units linked by dimethylsilicone monomer referred to as polyoligosiloxysilicone number one (PSS-1) was synthesized. The D4R building unit is provided by hexamethyleneimine cyclosilicate hydrate crystals, which were dehydrated and reacted with dichlorodimethylsilane. The local structure of D4R silicate units and dimethyl silicone monomers was revealed by multidimensional solid-state NMR, FTIR and modeling. On average, D4R silicate units have 6.8 silicone linkages. Evidence for preferential unidirectional growth and chain ordering within the PSS-1 copolymer was provided by STEM and TEM. The structure of PSS-1 copolymer consists of twisted columns of D4R silicate units with or without cross-linking. Both models are consistent with the spectroscopic, microscopic and physical properties. PSS-1 chains are predicted to be mechanically strong compared to silicones such as PDMS, yet more flexible than rigid silica materials such as zeolites.

Pages

Subscribe to RSS - E. Breynaert